Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in human keratinocytes and ex vivo skin.

نویسندگان

  • Devita Surjana
  • Gary M Halliday
  • Diona L Damian
چکیده

Nicotinamide (vitamin B3) protects from ultraviolet (UV) radiation-induced carcinogenesis in mice and from UV-induced immunosuppression in mice and humans. Recent double-blinded randomized controlled Phase 2 studies in heavily sun-damaged individuals have shown that oral nicotinamide significantly reduces premalignant actinic keratoses, and may reduce new non-melanoma skin cancers. Nicotinamide is a precursor of nicotinamide adenine dinucleotide (NAD(+)), an essential coenzyme in adenosine triphosphate (ATP) production. Previously, we showed that nicotinamide prevents UV-induced ATP decline in HaCaT keratinocytes. Energy-dependent DNA repair is a key determinant of cellular survival after exposure to DNA-damaging agents such as UV radiation. Hence, in this study we investigated whether nicotinamide protection from cellular energy loss influences DNA repair. We treated HaCaT keratinocytes with nicotinamide and exposed them to low-dose solar-simulated UV (ssUV). Excision repair was quantified using an assay of unscheduled DNA synthesis. Nicotinamide increased both the proportion of cells undergoing excision repair and the repair rate in each cell. We then investigated ssUV-induced cyclobutane pyrimidine dimers (CPDs) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxoG) formation and repair by comet assay in keratinocytes and with immunohistochemistry in human skin. Nicotinamide reduced CPDs and 8oxoG in both models and the reduction appeared to be due to enhancement of DNA repair. These results show that nicotinamide enhances two different pathways for repair of UV-induced photolesions, supporting nicotinamide's potential as an inexpensive, convenient and non-toxic agent for skin cancer chemoprevention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nicotinamide Enhances Repair of Arsenic and Ultraviolet Radiation-Induced DNA Damage in HaCaT Keratinocytes and Ex Vivo Human Skin

Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) red...

متن کامل

Trichosanthes kirilowii extract enhances repair of UVB radiation-induced DNA damage by regulating BMAL1 and miR-142-3p in human keratinocytes

Ultraviolet B (UVB) radiation induces DNA damage, oxidative stress and inflammation, and suppresses the immune system in the skin, which collectively contribute to skin aging and carcinogenesis. The DNA damage response, including DNA repair, can be regulated by the circadian clock and microRNA (miRNA) expression. The aim of the present study was to evaluate the reparative action of Trichosanthe...

متن کامل

Heat-mediated reduction of apoptosis in UVB-damaged keratinocytes in vitro and in human skin ex vivo.

BACKGROUND UV radiation induces significant DNA damage in keratinocytes and is a known risk factor for skin carcinogenesis. However, it has been reported previously that repeated and simultaneous exposure to UV and heat stress increases the rate of cutaneous tumour formation in mice. Since constant exposure to high temperatures and UV are often experienced in the environment, the effects of exp...

متن کامل

Melanocyte-stimulating hormone directly enhances UV-Induced DNA repair in keratinocytes by a xeroderma pigmentosum group A-dependent mechanism.

Melanocyte-stimulating hormone (MSH) reduces UV-induced DNA damage through the induction of pigmentation. In this study, we provide evidence that MSH also enhances DNA repair in skin keratinocytes by modulating the function of DNA repair molecules. Intracutaneous injection of MSH prevented UV-induced DNA damage in human and mouse skin independent of its effects on melanogenesis. In keratinocyte...

متن کامل

Compound K suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair in human keratinocytes.

Ultraviolet (UV)-induced DNA damage is a crucial molecular trigger for sunburn cell formation and skin cancer. Nucleotide excision repair (NER) is the main mechanism in repairing UVB-induced DNA damage of mammalian cells. The purpose of this study is to investigate the functional role of ginsenoside compound K on HaCaT cells (a keratinocyte-derived permanent cell line) irradiated by UV. Hoechst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 34 5  شماره 

صفحات  -

تاریخ انتشار 2013